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This work aims at the development of a Lagrangian large eddy simulation (LES)
scheme. The scheme is based on the filtered vorticity transport equation and on
modeling the effects of subfilter scale (SFS) velocity and vorticity fluctuations using
a dynamic eddy diffusivity model. The dynamic implementation of the model relies
on multiple filtering in order to determine model coefficients from the resolved
data. The performance of the dynamic SFS model is examined usinga priori tests
that are based on direct numerical simulations of forced, homogeneous, isotropic
turbulence. The tests show a fair correlation of the model with SFS convection of
vorticity. In addition, the computed value of the dynamic model coefficient is in good
agreement with predictions based on enstrophy balances. Finally, the direct numerical
simulation data is used to compare a three-dimensional particle representation of the
model with spectral evaluations. The tests show that when the particle representation
is sufficiently resolved, the Lagrangian model predictions are in good agreement with
spectral results. c© 1998 Academic Press

1. INTRODUCTION

Large eddy simulation (LES) generally aims at overcoming the scale disparity of turbulent
flow by numerically solving equations which describe the evolution of the large scales of
motion. A widespread LES approach is based on spatially filtering the equations of motion
[1–3]. Due to the convective nonlinearity of the momentum equations, a stress term appears
in the filtered equations which includes direct contributions from unresolved scales. This
unknown stress must be modeled exclusively in terms of resolved, large-scale quantities; this
is the analogue of the well-known closure problem which affects the Reynolds-averaged
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equations of motion. When filtering and spatial differentiation commute, the governing
equations for LES take the form of the original equations, together with a model term. The
effectiveness of LES depends, in particular, on the effectiveness of the model in representing
the impact of unresolved scales.

Most previous applications of LES have been performed using grid-based approximations
of the filtered Navier–Stokes equations. On the other hand, despite recent interest in Eulerian
vorticity-based formulations (e.g. [4–6]) LES of the vorticity transport equation remains
scarce. However, particle-based, Lagrangian large eddy simulations have been attempted.
The original efforts towards the development of numerical methods for Lagrangian LES
are due to Chorin [7, 8]. These have led, in particular, to the well-known “hairpin-removal”
schemes. The latter are motivated by renormalization of the vorticity evolution equations
which, like spatial filtering, aims at “absorbing” the effect of the smallest lengthscales by
constructing “effective” equations of motion. In its basic form, Chorin’s hairpin removal
scheme essentially consists of a filament-based simulation, together with a local mesh re-
distribution algorithm. The redistribution algorithm acts on the geometry of the filaments by
removing the smallest scales, which are typically in the form of hairpin vortices. Recently
proposed extensions [9] of the hairpin removal algorithm include the incorporation of renor-
malized Biot–Savart interaction which accounts for the removal (renormalization) process.

Hairpin removal schemes have been applied in a variety of conditions, including both
bounded [10] and free shear flows [11]. A similar approach has been recently proposed
by Fernandezet al. [12], based on the combination of a vortex filament scheme with a 3D
“filament-surgery” algorithm. The surgery is based on identifying “hairpins” (or locally
collapsed regions) with local minima of the energy density along the filament, and locally
removing them by remeshing the filament.

In this paper, an alternative approach to Lagrangian LES is explored. We follow a similar
approach to the grid-based LES in primitive variables and start with the filtered vorticity
transport equation. As discussed in Section 2, the filtering operation leads to the definition
of a subfilter scale (SFS) torque which accounts for unresolved velocity and vorticity fluc-
tuations. A dynamic eddy-diffusivity model is then proposed in order to represent the SFS
torque which is due to these fluctuations. In fact, Winckelmanset al. [13] have recently
compared nondynamic eddy–viscosity models for the velocity–pressure and the velocity–
vorticity formulations of LES and concluded that the latter were potentially more realistic.
The primary objective in the present paper is to examine the suitability of a Lagrangian for-
mulation of a dynamic eddy diffusivity model. As outlined in Section 3, the Lagrangian for-
mulation is based on a particle representation of the vorticity field. In Section 4 the dynamic
eddy diffusivity model is first analyzed usinga priori tests, based on results of direct numer-
ical simulation (DNS) of forced isotropic turbulence. In Section 5 the DNS data is used to
examine a particle representation of the SFS model and of the dynamic model coefficient. We
restrict our attention toa priori tests of the Lagrangian model; implementation of the particle
scheme will be discussed elsewhere [14]. Major conclusions are summarized in Section 6.

2. FORMULATION

2.1. LES of Momentum Equations

In order to clearly outline the present construction, we start with a brief description of LES
of the momentum equations in primitive variables. As mentioned in the Introduction, this
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approach is typically based on solutions of the filtered Navier–Stokes equations [1, 2, 15],

∇ · ũ = 0, (1)

∂ũ
∂t
+ ũ · ∇ũ = − 1

ρ
∇ p̃+ ν∇2ũ+ F̃ −∇ · τ , (2)

whereu is the velocity vector,t is time,ρ is density,p is pressure,ν is the kinematic visco-
sity,F is a body force term, and

τi j = ui u j˜ − ũi ũ j (3)

is the subgrid scale (SGS), or subfilter scale stress. Here and in the following, tildes are
used to denote spatially filtered quantities. Following [1, 2, 15] filtering is assumed to be
based on a convolution of the form

q̃(x, t) =
∫

G1(|x− x′|)q(x′, t) d3x′, (4)

whereq is the quantity being filtered. We also assume that the “grid filter”G1 is a homoge-
neous, smooth, and rapidly decaying radial function and that the force fieldF acts at large
scales only, i.e.F̃ ≡ F .

In order to close the equation system (1)–(2), one needs to provide a model of the unknown
SGS stressτ , or its divergence∇ · τ , in terms of the filtered velocity field̃u. A well-known
model for the deviatoric part of the SGS stress is the Smagorinsky eddy viscosity model
[16],

τi j − (δi j /3)τkk = −2νTS̃i j , (5)

νT = C2
s1

2|S̃|, (6)

where|S| ≡√2SmnSmndenotes the modulus of the strain-rate tensor. Typically, the constant
Cs is prescribed; “standard” values are around 0.15 [2, 15].

An alternative to prescribing the model constantCs is based on the so-called dynamic
procedure [17], which relies on multiple filtering operations to determineCs from the
simulated fields. Thus, an additional filtering operation, called the test filter, is introduced.
The test filter, which has width1′>1, is denoted by an overbar and is given by

ū(x, t) =
∫

G1′(|x− x′|)u(x′, t) d3x′. (7)

Applying the combined grid and test filters to the Navier–Stokes equations introduces a
stress at scale1′,

Ti j = ui u j˜ − ¯̃ui ¯̃u j . (8)

The SGS stresses at the two filter levels1 and1′ are linked by the Germano identity [17],

Li j = Ti j − τ̄ i j = ũi ũ j − ¯̃ui ¯̃u j . (9)



               

696 MANSFIELD, KNIO, AND MENEVEAU

Note that Eq. (9) involves̃u only, so that evaluation ofL does not require knowledge of the
unfiltered velocityu. Assuming thatT can be modeled in a similar fashion asτ , and that
Cs is locally independent of the width of the test filter, one obtains

C2
s

(
212|S̃|S̃i j − 21′2 ¯|S̃| ¯̃Si j

) = ũi ũ j − ¯̃ui ¯̃u j − δi j /3
(
ũnũn − ¯̃un ¯̃un

)
. (10)

Since all quantities on the right-hand side of Eq. (10) are resolved, dynamic determination
of Cs is possible.

LES using the dynamic Smagorinsky model have been used in various applications (e.g.,
[18–20]). Of course, other SGS models have been considered for LES; prominent examples
include similarity [21, 22] and hyperviscosity [23] models. In particular, similarity and
mixed models have been found to reproduce a number of physical features of the SGS
stress (e.g., relationships between small scales and coherent structures [24, 25], response
to rapid straining [26]). The mixed model has also been shown to perform quite well in
simulations of various flows (see, e.g., [27–30]). As a first step, in the present work we will
focus only on the dynamic eddy viscosity model and its implementation in a vorticity-based
LES scheme. Future extensions include the development of dynamic mixed models in this
framework.

2.2. Vorticity Formulation of LES

The starting point in the present development of vorticity-based LES is the filtered vor-
ticity transport equation,

∂ω̃i

∂t
+ ũ j

∂ω̃i

∂xj
= ω̃ j

∂ũi

∂xj
+ ν∇2ω̃i + [∇ ×F ] i − ∂Ri j

∂xj
, (11)

where

Ri j ≡ (ω̃i u j − ω̃i ũ j )− (ũiω j − ũi ω̃ j ) (12)

is the subgrid scale vorticity stress. The vorticity stressR accounts for the effect of unre-
solved velocityandvorticity fluctuations.R is composed of two parts,

Ri j = 8i j −8 j i , (13)

where

8i j ≡ ω̃i u j − ω̃i ũ j . (14)

Note that8 j i represents SFS vortex stretching and tilting due to the unresolved motion
while 8i j reflects vortex transport by SFS velocity fluctuations. Also note that Eq. (13)
immediately shows thatR is antisymmetric.

2.2.1. Subfilter scale model.As for the filtered momentum equations, one must provide
a model for the vorticity stressR in order to close the filtered vorticity transport equation.
Alternatively, one can simply model the divergence of the vorticity stress,∂Ri j /∂xj , which
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we refer to as the subfilter scale torque. We shall adopt the latter approach and, by analogy
with the Smagorinsky model, focus on the following eddy diffusivity model [13, 31],

g= −∇ × (νT∇ × ω̃), (15)

where

νT = C2
r 1

2|S̃| (16)

is the eddy diffusity. Note that by construction the divergence of the SFS torque vanishes
identically. Also note that the eddy diffusivity in Eq. (16) is not necessarily identical to the
eddy diffusivity in the Smagorinsky model, Eq. (6); the model constantsCr andCs are used
to distinguish between the two quantities. For isotropic turbulence the model coefficientCr

may be analytically estimated, as outlined in Appendix A. The estimated valueCr = 0.12
is close to, but somewhat smaller than the standard Smagorinsky constantCs ≈ 0.15.

It is also interesting to point out that the SFS torque can be alternatively expressed as

gi = ∂

∂xj

(
νT
∂ω̃i

∂xj

)
− ∂νT

∂xj

∂ω̃ j

∂xi
. (17)

Thus,g is expressed as the sum of a gradient-diffusion term and an additional term which
corresponds to the scalar product of the gradient of the eddy diffusivity with the transpose
of the vorticity gradient. The second term can be thought of as a correction term that is
needed to render the SFS torque divergence-free.

2.2.2. Dynamic implementation.As discussed in Section 2.1, implementation of the
eddy diffusivity model may either rely on a prescribed model coefficient or on a dynamic
evaluation of the model constant. Here, we explore the latter option by adapting the dynamic
procedure in [17] to the filtered vorticity transport equation. Briefly, filtering the vorticity
transport equation at scale1 and then at scale1′ yields

∂ω̃i

∂t
+ ũ j

∂ω̃i

∂xj
= ω̃ j

∂ũi

∂xj
+ ν∇2ω̃i + εi jk

∂Fk

∂xj
+ gi (18)

and

∂ ¯̃ωi

∂t
+ ¯̃u j

∂ ¯̃ωi

∂xj
= ¯̃ω j

∂ ¯̃ui

∂xj
+ ν∇2 ¯̃ωi + εi jk

∂Fk

∂xj
+ Gi , (19)

respectively, whereG is the SFS torque at scale1′. We now assume that the SFS torquesg
andG can be modeled as in Eq. (15) with the same model coefficient; we thus have

gi = C2
r 1

2

[
∂

∂xj

(√
2S̃mnS̃mn

∂ω̃i

∂xj

)
− ∂

∂xj

(√
2S̃mnS̃mn

)
∂ω̃ j

∂xi

]
(20)

and

Gi = C2
r 1
′2
[
∂

∂xj

(√
2¯̃Smn

¯̃Smn
∂ ¯̃ωi

∂xj

)
− ∂

∂xj

(√
2¯̃Smn

¯̃Smn

)
∂ ¯̃ω j

∂xi

]
. (21)
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Next, Eq. (18) is filtered as scale1′ and the result is subtracted from Eq. (19), leading to

(ũ · ∇ω̃ − ¯̃u · ∇ ¯̃ω)− (ω̃ · ∇ũ− ¯̃ω · ∇ ¯̃u) = ḡ−G. (22)

Substituting the model definitions in Eqs. (20) and (21), and factoring the model coefficient,
Cr , we get

l = C2
r m, (23)

where

l = l C + lS (24)

l C ≡ (ũ · ∇ω̃ − ¯̃u · ∇ ¯̃ω), (25)

lS ≡ −(ω̃ · ∇ũ− ¯̃ω · ∇ ¯̃u), (26)

m = mD +mZ, (27)

mD ≡ 12∇ · (|S̃|∇ω̃)−1′2∇ · (| ¯̃S|∇ ¯̃ω), (28)

and

mZ ≡ −(12(∇|S̃|) · (∇ω̃)T −1′2(∇| ¯̃S|) · (∇ ¯̃ω)T). (29)

Note thatl andm involve resolved quantities only and that the only “unknown” in Eq. (23)
is Cr . However, Eq. (23) is a vector equality; i.e.,Cr is overspecified. This difficulty is
tackled by selectingCr so as to minimize the average square error [32, 33],〈e · e〉, where

e≡ l − C2
r m. (30)

Differentiating the mean-square error with respect toC2
r and assuming that the model

constant can be factored out of the filtering and averaging operators (for a discussion of the
limitations of this assumption, see [33]), we get

∂

∂C2
r

〈e · e〉 = ∂

∂C2
r

〈l · l〉 − 2
∂

∂C2
r

(
C2

r 〈l ·m〉
)+ ∂

∂C2
r

(
C4

r 〈m ·m〉
)

= −2〈l ·m〉 + 2C2
r 〈m ·m〉.

Thus, the mean square error is minimized when

C2
r = 〈l ·m〉/〈m ·m〉. (31)

This completes the formulation of the dynamic model.
Note that there may be several choices for the averaging operation, including spatial

averaging [17, 33] and averaging over particle trajectories [34]. For simplicity we restrict
our attention to simple spatial averaging, although Lagrangian averaging appears as a natural
candidate for future studies.
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3. PARTICLE DISCRETIZATION

As mentioned in the Introduction, one of the motivations of the present work is the
implementation of the SFS vorticity model in a Lagrangian vortex method. In this section
we focus on formulating an appropriate particle discretization of the SFS model, whose
performance will be later tested against the predictions of finite-difference and spectral
approximations. The approach adopted below closely follows well-known vortex element
constructions; see reviews in [35–37]. Thus, we start with a brief summary of the Lagrangian
discretization and then discuss the model implementation.

3.1. Vortex Method

The three-dimensional vortex element method is a Lagrangian technique for the simula-
tion of the vorticity transport equation:

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇2ω. (32)

In its simplest form, the method is used in an unbounded space with no internal boundaries,
where the velocity is given by the Biot–Savart law [38]:

u(x) = − 1

4π

∫
(x− x′)× ω(x′)
|x− x′|3 d3x′. (33)

The essential feature of the vortex method used in the present work is the representation
of the vorticity field using a finite number,N, of desingularized vortex elements. The vortex
elements are specified in terms of their position vectorXi , strengthζ i , and volumedVi .
The elements induce a smooth approximation to the vorticity field, according to [39, 40],

ωN(x, t) =
N∑

i=1

ζ i (t) dVi fδ(x− Xi (t)), (34)

where

fδ(x) ≡ 1

δ3
f

( |x|
δ

)
(35)

is a spherical rapidly decaying core function andδ is the core radius. The functionf is also
assumed to satisfy some moment conditions [40, 41] which govern the convergence of the
scheme.

The vorticity distribution in Eq. (34) induces a smooth velocity field given by the desin-
gularized Biot–Savart law,

u(x) = − 1

4π

N∑
i=1

(x− Xi )× ζ i

|x− Xi |3 dVi κδ(x− Xi ), (36)

where

κδ(x) ≡ κ
( |x|
δ

)
, κ(r ) = 4π

∫ r

0
ξ2 f (ξ) dξ (37)

is the velocity smoothing kernel corresponding tof [40]. In all of the computations below,
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we shall rely on the third-order Gaussian core function [42],

f (r ) = 3

4π
exp(−r 3) (38)

with corresponding velocity kernel

κ(r ) = 1− exp(−r 3). (39)

As shown by Beale and Majda [40], this choice off andκ leads to an “essentially second-
order” particle discretization.

Using the particle representation of the velocity and vorticity field, the 3D vortex method
then transforms the original system (32)–(33) into a system of evolution equations for the
particle positions and strengths. The evolution of the flow is determined by integrating

dXi

dt
= u(Xi ) (40)

dζ i

dt
= ζ i · ∇u(Xi )+ νD[ζ i ]; (41)

i.e. by moving the elements along particle trajectories and modifying their strengths ac-
cording to the vorticity transport equation. Here,D[ζ i ] is the Lagrangian representation of
the Laplacian [43].

Below, we will explore how the particle representation of the vorticity field can be
understood as a spatial filtering operation and, hence, exploited to dynamically determine
the coefficient of the SFS model. To this end, it is first necessary to specify the meaning of
various filtering operations in the present Lagrangian context.

3.2. Grid and Test Filtering

In Eulerian grid-based schemes, resolution is limited to the mesh spacing, quantities
represented on the computational grid are commonly considered to be “grid-filtered,” and
the filter width1 is identified with the mesh size. In most situations, the precise relationship
between the filtering operation and the numerical discretization is either not established, or
stated in anad hocfashion. A similar issue arises for Lagrangian particle discretizations.
However, the situation differs due to the introduction of smoothing functions with a core
size that is larger than the particle spacing. Here, it is natural to associate the resolution
limit with the core radius,δ, and to consider the Lagrangian representation of the vorticity
field ωN in Eq. (34) to be “particle filtered.” The correspondence between the filtering
and the numerical representation can be further clarified by noting that the Lagrangian
representation in Eq. (34) is a discretized version of the approximate identity:

ω(x) ≡ δ(x) ∗ ω(x) = lim
δ→0

fδ(x) ∗ ω(x) = lim
δ→0

ω̃(x) (42)

where∗ denotes the convolution operator. Thus, at finiteδ it is appropriate to interpret
ωN(x) ≈ ω̃(x) as the filtered vorticity, and the core smoothing function as the spatial filter.

The convection velocity in Eq. (40) is taken as the filtered velocity field. In this fashion,
the total derivative in Eq. (41) includes the convective derivative with a convection velocity
equal to the filtered velocity field, as in the left-hand side of Eq. (11). The effects of subfilter
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scale velocity and vorticity fluctuations on the transport of filtered vorticity are accounted
for in8i j . Alternatively, one could seek formulations in which the SFS model is written in
terms of a diffusion velocity. Thus, the effects of unresolved motion would be accounted
for in the equation describing the motion of the elements while the SFS term would drop
out of the evolution equation for the vortex strengths. We shall not explore such approaches
in the present work.

In order to compare different filters it is useful to “standardize” the definition of the
filter size. Specifically, we seek to relate the vortex element core size to the width1 of an
“equivalent” box filter. We introduce a scaling coefficientc, such that1 = cδ, and define
a particle filterG1 using

G1(x) ≡ f1/c(x) = 3

4π

(
c

1

)3

exp

[
−
(

c|x|
1

)3
]
. (43)

The constantc is determined by requiring that the particle filterG1 has the same charac-
teristic size as the spherical box filter,

B1(x) =
{

6
π13 , if |x| ≤ 1/2,
0, otherwise.

(44)

This requirement is satisfied when the energy contents of the transformsĜ1 and B̂1 are
the same, i.e. when ∫

|Ĝ1(k)|2 d3k =
∫
|B̂1(k)|2 d3k. (45)

For the third-order Gaussian in Eq. (43), numerical evaluation of the above integrals yields
c = 2.88243. Thus, the relationship between the core size and the (standardized) filter size
is1 = 2.88δ. Figure 1 compares the particle and the spherical box filters.

In the implementation of the dynamic model, application of a test filter is necessary. Here,
the test filter is assumed to have the same shape as the particle filter. The action of the test
filter is defined by

q̄(x) =
∑N

i=1 q(Xi ) exp
[−(c|x− Xi |/1′)3

]∑N
i=1 exp

[−(c|x− Xi |/1′)3
] , (46)

FIG. 1. Comparison of the spherical box filter,B, and the particle filter,G. The spherical box filter is shown
using a solid line, while the particle filter is shown using a dashed line.
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whereq is the quantity being test-filtered and1′ is the width of the test filter. Note that both
the particle filter and test filter are defined in terms of the particle positions and strengths.

3.3. Evaluation of Cr

In order to determine the model constantCr dynamically one must evaluate, based on the
Lagrangian particle data, the quantitiesl C, lS,mD, andmZ, defined in Eqs. (25), (26), (28),
and (29), respectively. Note thatmD is a gradient diffusion term with spatially dependent
diffusion coefficient and thatl has contributions from vortex transport(l C) and stretching
(lS). Meanwhile,mZ is a generalized transport term involving spatial gradients of vorticity
and eddy diffusivity.

In estimatingmD, we rely on the Lagrangian approximations developed by Degond and
Mas-Gallic [43] for an isotropic, spatially dependent diffusivity. In particular, it is shown in
[43] that the gradient diffusion operatorD[ζ ] ≡ ∇ · (b(x)∇ζ(x)) can be approximated as

D[ζ ](Xk) ≈ 1

δ2

∑
l

dVlηδ(Xk − Xl )µ(Xl ,Xk)(ζl − ζk), (47)

whereXl , dVl , andζl are the particle positions, volumes, and strengths in the Lagrangian
representation ofζ . Here, the kernelηδ is a rapidly decaying smoothing function that obeys
similar conditions as the core function used in the particle representation of the vorticity
field. Meanwhile,µ is a symmetric kernel which satisfies [43]

µ(x, y) = µ( y, x), µ(x, x) = b(x). (48)

In the present application of Eq. (47), the kernelη is related to the gradient of the core
smoothing function; we use [43]

η(r ) ≡ g(r ) = −2

r

d f

dr
. (49)

In addition, we choose to associate the kernelµ with the geometric mean diffusivity; i.e.,
we set

µ(x, y) =
√

b(x)b(y). (50)

Another well-known choice forµ is the arithmetic mean,µ(x, y) = (b(x)+ b( y))/2 [43].
Thus, the diffusion term∇ · (|S̃|∇ω̃) is approximated using

∇ · (|S̃|∇ω̃)i ≈ 1

δ2

N∑
j=1

√
|S̃(Xi )||S̃(X j )|(ω̃(X j )− ω̃(Xi )) dVj gδ(X j − Xi ). (51)

Once the diffusion term is obtained at all the particle locations, it is test-filtered according to

∇ · (|S̃|∇ω̃)(Xi ) =
∑N

j=1∇ · (|S̃|∇ω̃)(X j ) exp
[−(c|Xi − X j |/1′)3

]∑N
j=1 exp

[−(c|Xi − X j |/1′)3
] . (52)

A similar approach is adopted for the second term in Eq. (28) which involves diffusion of
the test-filtered vorticity. Specifically, Eq. (47) is once again used, in conjunction with the
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test filtered vorticity¯̃ω and strain¯̃S; this yields

∇ · (| ¯̃S|∇ ¯̃ω)(Xi ) ≈ 1

δ2

N∑
j=1

√
| ¯̃S(Xi )|| ¯̃S(X j )|( ¯̃ω(X j )− ¯̃ω(Xi )) dVj gδ(X j − Xi ). (53)

The filtered strain and vorticity values are computed by first calculating the filtered velocity
gradient,∇ũ; this is accomplished by analytically differentiating the desingularized Biot–
Savart law and evaluating the resulting expression [44]. The results are then used to compute
a test-filtered version of the velocity gradient, as described in Eq. (46). The test filtered
vorticity ¯̃ω and strain¯̃S are then extracted from the test filtered velocity gradient using their
basic definitions.

We now turn our attention to the evaluation ofl C. As mentioned earlier (see Eq. (25)),l C

is a difference between filtered versions of the convective derivative of vorticity, which is
absorbed by the Lagrangian formulation. In order to avoid explicit estimates of the vorticity
gradient, we first rewritel C using the relationship

l C = ũ · ∇ω̃ − ¯̃u · ∇ ¯̃ω

=
(
∂ω̃

∂t
+ ũ · ∇ω̃

)
−
(
∂ ¯̃ω

∂t
+ ¯̃u · ∇ ¯̃ω

)
(54)

= d̃ω̃

dt
−

¯̃d ¯̃ω

dt
,

whered̃/dt represents the time rate of change for an observer moving atũ while ¯̃d/dt
represents the time rate of change for an observer moving at¯̃u. In the proposed scheme, the
filtered Lagrangian derivatives are approximated using a forward derivative:[

d̃ω̃

dt

]
(Xi , t) ≈ ω̃(Xi (t +1t), t +1t)− ω̃(Xi (t), t)

1t
(55)

and [ ¯̃d ¯̃ω

dt

]
(Xi , t) ≈

¯̃ω(Xi (t)+1t ¯̃ui (t), t +1t)− ¯̃ω(Xi (t), t)

1t
. (56)

Based on the above approximations, we are now in a position to estimatemD andl C for
each element directly from the Lagrangian data. Evaluation oflS can be performed directly,
based on the computed values of the stretching term. However,a priori tests performed in
the following section show that, for the purpose of evaluatingCr , l

S can be safely neglected.
The tests show thatmZ can be omitted as well, and this is a significant advantage since its
evaluation is generally cumbersome.

Taking advantage of these results, we can now proceed directly to the evaluation ofCr .
As shown in Eq. (31),Cr is given in terms of spatial averages ofl · m andm · m. In the
Lagrangian computations, these averages are computed by direct summation over the fields
of the elements; we use

〈l ·m〉 =
∑N

i=1 l i ·mi dVi∑N
i=1 dVi

, (57)
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〈m ·m〉 =
∑N

i=1 mi ·mi dVi∑N
i=1 dVi

. (58)

The model coefficient is then obtained from

C2
r =

∑N
i=1 l i ·mi dVi∑N

i=1 mi ·mi dVi

. (59)

4. A PRIORI TESTS OF SFS MODEL

In this section, the basic properties of the SFS model are examined througha priori tests,
using data from direct numerical simulations (DNS) of homogeneous, isotropic turbulence.
The DNS data resulting from these simulations can provide direct estimates of the “real”
SFS torque. The resulting data can then be used to assess the performance of the SFS model.
The analysis aims at addressing a variety of fundamental questions regarding both the real
and modeled SFS torques, including: (1) What is the relative importance of SFS stretching
and tilting compared with SFS convection?; (2) How important is the “nondiffusive” part
of the torque model?; (3) How well aligned are the real and modeled SFS torques?; (4)
How does the dynamic model coefficient compare with the theoretical value?; etc. These
questions are tackled below, following a brief description of the DNS data.

4.1. DNS Data

The DNS data used in the present work were obtained from simulations of forced,
isotropic turbulence [45]. The simulations were performed using a pseudo-spectral dis-
cretization of the Navier–Stokes equations in rotation form. Time integration is based on
exact factorization of the viscous term and second-order Adams–Bashforth treatment of the
nonlinear term. Thus, the solution is advanced according to [46, 47],

ûn+1 = ûn exp(−νk21t)+1tP ·
[

3

2
( ̂u× ω)n exp(−νk21t)

−1

2
( ̂u× ω)n−1 exp(−2νk21t)+ f̂ n exp(−νk21t)

]
, (60)

whereP is the projection operator in the direction perpendicular to wavenumber vectork,
k ≡ |k|, and1t is the time step. The forcinĝf is adjusted at every time step to maintain a
constant energy injection rate. Forcing is performed for low wave numbers falling within
the sphere 0< |k|< 2; it is expressed as

f̂ k = ε
ûk∑

0<|k|<2 ûk · ûk
, (61)

whereε is the energy injection rate. Dealiasing of quadratic terms is found to be unnec-
essary for this well-resolved DNS, but a spherical truncation procedure is nevertheless
implemented.

Table I summarizes parameters used in the simulations. There are essentially two data
sets with different resolutions, both at moderate, Reynolds number. We will primarily rely
on the larger data set withN= 1283 grid points.
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TABLE I

DNS Simulation Parameters

N 64 128

L 2π 2π
u′ 0.11 0.22
` 1.37 1.33
λ 0.56 0.42
Reλ 66 93
ε 0.000704 0.004
η 0.0345 0.0224
ν 0.001 0.001

Note. L is the domain length,N3 is the number
of points,u′ is the root-mean-square velocity,` is
the integral scale,λ is the Taylor microscale, Reλ
is the Taylor Reynolds number,ε is the energy
injection (and average dissipation) rate,η is the
Kolmogrov scale, andν is the kinematic viscosity.

4.2. Decomposition of Real and Modeled SFS Torques

Following the discussion in Section 2 the real SFS torque,r, has contributions from SFS
convection and SFS stretching and tilting. We identify these contributions by decomposing
r using

ri = r C
i + r S

i , (62)

where

r C
i ≡ −

∂

∂xj
(ω̃i u j − ω̃i ũ j ) (63)

and

r S
i ≡

∂

∂xj
(ũiω j − ũi ω̃ j ). (64)

Thus,rC andrS, respectively, denote the contribution of SFS transport and SFS stretching
and tilting to the overall SFS torquer.

In large-eddy simulationsr is not known and so it is replaced with the SFS modelg
(Eq. (15)). The latter is also decomposed into two parts,

gi = gD
i + gZ

i , (65)

where

gD
i ≡ C2

r 1
2 ∂

∂xj

(√
2S̃mnS̃mn

∂ω̃i

∂xj

)
(66)

is a familiar gradient-diffusion term, and

gZ
i ≡ −C2

r 1
2 ∂

∂xj

(√
2S̃mnS̃mn

)
∂ω̃ j

∂xi
(67)

is an additional term due to spatially varying eddy viscosity.
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FIG. 2. Probability density of‖rC‖/‖rS‖.

Below, we examine the behavior ofr and assess the roles of SFS transport(rC) and SFS
stretching and tilting(rS). Similarly, we examine the relative contributions ofgD andgZ to
the modeled SFS torqueg. Insight gained from this exercise is used to guide analysis of
model performance.

4.3. Roles of SFS Convection and SFS Stretching and Tilting

The relative magnitudes ofrC andrS are examined using the 1283 DNS data set. The
filter width is set to1 = 0.448, which corresponds to 11 mesh spacings approximately. The
ratios of filter width to Kolmogorov scale and filter width to integral scale are1/η = 20
and1/` = 0.34, respectively. Filtering of the DNS data is performed using the third-order
Gaussian filter (Eq. (43)).

Figure 2 shows the probability density distribution of the ratio of torque magnitudes
‖rS‖/‖rC‖. The figure shows thatrS is generally smaller thanrC, but that it is not negligible.
In fact, the results in Fig. 2 indicate that the magnitude ofrS is larger than that ofrC

in over 15% of the volume of the flow. Table II shows the magnitudes of the subfilter
scale torquesrC and rS conditionally averaged over those regions where‖rC‖> ‖rS‖,
and where‖rC‖≤‖rS‖. Also shown are the averaged values over the entire domain. The
results show that the ratio of the average magnitude ofrC andrS in the entire domain is
〈‖rS‖〉/〈‖rC‖〉 = 0.456. Table II also indicates that, where‖rS‖ exceeds‖rC‖, it is as much
due to‖rS‖ being large as it is due to‖rC‖ being small; i.e., large values of‖rS‖/‖rC‖ do
not occur only where‖rC‖ is unusually small.

Table III provides the correlation coefficient between the two SFS torquesrC and rS.
Included is a breakdown of the results into quintiles of magnitudes ofrC and of rS.
The breakdown is based on defining five bins each associated with an interval of torque

TABLE II

Averages and Conditional Averages of Normalized

Subfilter Scale Torques

· 〈‖·‖〉 〈‖·‖|‖r C‖> ‖r S‖〉 〈‖·‖|‖r C‖≤‖r S‖〉

r C 11.8 14.0 6.14
r S 5.83 5.26 8.99

Note. Values ofr C andr S are normalized by multiplying bỳ2/u′2.



                  

DYNAMIC LES FOR VORTICITY TRANSPORT 707

TABLE III

Correlation of rC and rS

Quintile Correlation Correlation
All ‖r C‖ −0.276 ‖r S‖ −0.276

0 0.0668 0.0093
1 5.06 −0.0956 2.25 −0.0713
2 8.15 −0.148 3.65 −0.118
3 12.0 −0.189 5.43 −0.163
4 18.7 −0.238 8.50 −0.218
5 141. −0.345 68.4 −0.364

Note. The correlation coefficient is〈r C · r S〉/[〈r C · r C〉〈r S · r S〉]1/2. The columns
‖r C‖ and‖r S‖ contain thei th quintile of those norms. The zeroth quintile value is
the lowest value of the corresponding norm. The correlation value for thei th quintile
is the correlation value obtained using the set of points where the norm falls between
values indicated at rowsi andi − 1.

magnitudes; each bin contains those data points where the torque magnitude falls within the
associated interval. These intervals form a partition of the overall range of torque magni-
tudes, and their endpoints are selected so that each bin contains essentially the same number
of points. Thus, when the data is binned according to the magnitude ofrC, the first bin con-
tains those points for which‖rC‖ falls within the first quintile, the second bin contains
points for which‖rC‖ is within the second quintile, and so on. The results in Table III show
that rC andrS have a small tendency to be anticorrelated. This result is also illustrated in
Fig. 3 which depicts the distribution of the angle betweenrC andrS. Also plotted using a
dotted line is a sine curve, which corresponds to a uniform random distribution of angles.
The data in Fig. 3 are shifted to the right of the dotted line, indicating a propensity forrC

andrS to be anti-aligned. The correlation values in Table III show that anti-alignment is
more likely for larger vectors, while small vectors are almost randomly aligned.

One can conclude from the present analysis of the real SFS torque that the effects of
subfilter scale convection and of subfilter scale stretching and tilting are both significant
and that, in principle, an accurate model should reproduce both effects. The results show
thatrC andrS follow different trends and may thus require different models.

FIG. 3. Probability density of the angle betweenrC andrS. The dotted line follows a sine function distribution,
which would correspond to uniform random alignment between the two torques.
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TABLE IV

Averages and Conditional Averages of Normalized Model

Subfilter Scale Torques

· 〈‖·/C2
r ‖〉 〈‖·/C2

r ‖|‖gD‖> ‖gZ‖〉 〈‖·/C2
r ‖|‖gD‖≤‖gZ‖〉

gD 849. 860. 167.
gZ 110. 108. 232.

Note. Values ofgD andgZ are normalized by multiplying bỳ2/u′2.

4.4. Behavior of SFS Model

A similar analysis is conducted for the modeled SFS torquesgD andgZ. Figure 4 shows
the distribution of the ratio‖gZ‖/‖gD‖. The curve shows thatgZ is typically an order of
magnitude smaller thangD. It also indicates that the magnitude ofgZ exceeds that ofgD in
less than 1.5% of the volume of the domain.

These observations are further amplified in Table IV, which provides averages and condi-
tional averages of‖gZ‖ and‖gD‖. Consistent with the trends in Fig. 4, Table IV shows that
the ratio of the average magnitudes ofgZ andgD is quite small;〈‖gZ‖〉/〈‖gD‖〉 = 0.130.
In addition, the tabulated conditional averages indicate that where the ratio‖gZ‖/‖gD‖ is
large, it is primarily due to small values of‖gD‖. Finally, Table V shows thatgD andgZ

are poorly correlated, with near-zero correlation at all bands of‖gD‖ and‖gZ‖. This is also
illustrated in Fig. 5, which shows that the angle between the two SFS torques nearly follows
a random distribution.

The present tests clearly indicate thatgZ plays a minor role in the SFS model. Moreover,
since its evaluation in the context of a particle approximation would be quite involved, we
will assume thatgZ can be neglected from the model. This approximation will be adopted
in the tests of the following section and implemented in [14].

4.5. Correlation of r andg

In this section the modeled subfilter scale torqueg is compared to the “real” SFS torque
r. The analysis relies on the same data set and parameters used in the previous section.

Figure 6 shows the distribution of relative orientation of the SFS torquesr andg. Plotted
are five curves corresponding to a breakdown of the data into quintiles of‖r‖. Ideally, the

FIG. 4. Distribution of the ratio‖gZ‖/‖gD‖.
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TABLE V

Correlation of gD and gZ. The correlation coefficient

is 〈gD · gZ〉/ [〈gD · gD〉〈gZ · gZ〉]1/2

Quintile Correlation Correlation
All ‖gD/C2

r ‖ 0.00600 ‖gZ/C2
r ‖ 0.00600

0 2.80 0.252
1 308. 0.00404 37.5 0.00437
2 515. 0.0113 64.9 0.000366
3 788. 0.0126 101. −0.000671
4 1250 0.0123 163. 0.000168
5 9160 0.0028 1830 0.0110

Note. A breakdown into quintiles is performed as in Table III.

modeled torque would be perfectly aligned with the real torque, and the angle between the
two vectors would be everywhere equal to zero. Figure 6 shows that the alignment between
r andg is substantial, although far from perfect. It is interesting to note that the alignment
is strongest where‖r‖ is largest. This exercise was repeated by breaking down the data
according to the magnitude of‖g‖; the results reveal essentially the same trends as those
shown in Fig. 6 and are therefore omitted. On the other hand, the results show a different
trend when binning is based on the magnitude of the resolved vorticity‖ω̃‖. Figure 7 shows
that the alignment betweenr andg is almost independent of vorticity magnitude.

Tables VI and VII provide correlation coefficients and conditional correlations ofr and
g. The results show that correlation ofr andg is around 0.6 in the highest quintile of‖r‖
but only around 0.2 in the lowest quintile of‖r‖ (Table VI). In contrast, when binning is
based on‖ω̃‖, Table VII shows that the correlation ofr andg varies slightly, from 0.573
for the highest quintile to 0.444 for the lowest quintile.

One concern ina priori tests is that too much information may be used to calculate
the subfilter scale torque modelg, information that would not be available at the resolved
scales during LES (see the discussion in Liuet al. [22]). To examine this issue the spectral
collocation approximation ofg is replaced with its centered-difference approximation on
meshes coarser than that of the DNS. Tables VI and VII provide correlation results ob-
tained from both a spectral collocation approximation on the DNS grid (mesh sizeh), and

FIG. 5. Alignment ofgD andgZ.
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TABLE VI

Correlation of r and g

Finite difference
1FD/1filter

Spectral 0.0867 0.173 0.260 0.347

Quintile Correlation coefficients

All ‖r‖× `2/u′2 0.513 0.453 0.451 0.419 0.359

0 0.0436
1 5.32 0.173 0.153 0.155 0.147 0.125
2 8.35 0.269 0.238 0.240 0.226 0.194
3 12.1 0.352 0.311 0.313 0.295 0.253
4 18.4 0.440 0.392 0.394 0.372 0.324
5 147. 0.611 0.541 0.540 0.509 0.450

Note. The correlation coefficient is〈r · g〉/[〈r · r〉〈g · g〉]1/2. A breakdown
into quintiles of‖r‖ is performed, as in Table III.1FD/1filter gives the ratio
of the finite-difference grid to the filter width.

FIG. 6. Alignment of real and modeled SFS torques, binned by quintiles of‖r‖: (top) distribution of the angle
betweenr andg; (bottom) relative density.



                

DYNAMIC LES FOR VORTICITY TRANSPORT 711

TABLE VII

Correlation of r and g

Finite difference
1FD/1filter

Spectral 0.0867 0.173 0.260 0.347

Quintile Correlation coefficients

All ‖ω̃‖× `/u′ 0.513 0.453 0.451 0.419 0.359

0 0.0336
1 2.92 0.444 0.375 0.370 0.325 0.237
2 4.40 0.466 0.395 0.392 0.351 0.272
3 6.06 0.498 0.423 0.420 0.383 0.314
4 8.40 0.530 0.463 0.462 0.429 0.367
5 28.1 0.573 0.521 0.520 0.496 0.452

Note. The correlation coefficient is〈r ·g〉/[〈r · r〉〈g ·g〉]1/2. A breakdown
into quintiles of‖ω̃‖ is performed, as in Table III.1FD/1filter gives the ratio
of the finite-difference grid to the filter width.

FIG. 7. Alignment of real and modeled SFS torques, binned by quintiles of‖ω̃‖: (top) distribution of the
angle betweenr andg; (bottom) relative density.
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second-order centered differences on regular grids of mesh size1x= h, 2h, 3h, and 4h.
Recall that the filter size1 is roughly 11h. As a reference, typical particle spacings to be
employed in Lagrangian simulations [14] are half the core size, i.e.1/(2c) ∼ 2h.

At 1x= h, the correlations obtained with finite differences are about 11% lower than
those obtained using the spectral computations. This drop could be attributed to lower
accuracy in the finite difference calculations, but not to filtering or loss of information
since the same data set is fed to both calculations. The correlation results are nearly the
same when using centered differences with1x= h and1x= 2h. This indicates that the
quantities being evaluated are smooth at those scales. However, as1x is increased further
the correlation ofr andg once again decreases; at1x= 4h the correlation is about 27%
smaller than the spectral prediction. The drop in correlation is quite even across all quintiles
of ‖r‖. On the other hand, when binning is based on resolved vorticity magnitude the drop
in correlation is smaller where‖ω̃‖ is high, and greater where‖ω̃‖ is low.

The alignment betweeng andr is also examined by binning the data according to the
enstrophy source term ˜ω · r andω̃ · g. These terms represent production or dissipation of
resolved enstrophy by the real and modeled SFS torques, respectively. Figure 8 shows that
alignment ofr andg is highest where ˜ω · r is smallest (most negative). (Results obtained
by binning according to ˜ω · g show a similar trend and are omitted.) In other words, where
the real subfilter torque is diminishing the resolved enstrophy, it acts in a diffusive fashion.

FIG. 8. Alignment of real and modeled SFS torques, binned by quintiles of ˜ω · r: (top) distribution of the
angle betweenr andg; (bottom) relative density.
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FIG. 9. Alignment of portions of the real and modeled SFS torques.

In order to gain deeper insight into the strengths and weaknesses of the model, we analyze
the correlation of only portions of the SFS torque and the SFS model, e.g.rC versusg, or r
versusgZ. Results of this exercise are plotted in Fig. 9. The alignments ofr andgD and ofrC

andg have distributions which are similar to that ofr andg. On the other hand, the relative
orientations ofr andgZ show no preferred alignment;rS andg show a slight tendency to
form a 70◦ angle, but their alignment is basically random. Figure 9 indicates that the partial
alignment ofr andg is primarily due to the correlation betweenrC andgD. There is no
relation betweenr andgZ, nor betweenrS andgD. These observations provide additional
motivation for ignoringgZ. However, it was shown above that SFS stretching is significant,
so that the poor alignment betweeng andrS is clearly a weakness of the model.

Briefly, the indications from the present analysis are that the diffusive SFS torque model
has some correlation with the convective portion of the SFS torque but that it does not
do anything to capture the effects of SFS vortex stretching and tilting. An effective model
of the subfilter scale stretching and tilting would be a significant addition to the model
used in the present work, but this problem is relegated for future work in this area. While
yielding low correlation coefficients duringa priori tests, the eddy–viscosity closure still has
advantages from a practical point of view, mainly because it enhances numerical stability and
dissipation. The main practical difficulty with this model is to choose the model coefficient,
which we address in the next sections.
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4.6. Determination of Model Coefficient

The correlations ofr andg obtained in the previous section, as well as the corresponding
alignment angles, are independent of the value of the model coefficient,Cr . For the subfilter
scale model to be complete, however,Cr must be determined. In this section, we explore
three methods for computingCr . They are all based on theL2 norm appropriate to the
present formalism, the enstrophy being defined as1

2〈ω̃i ω̃i 〉. As detailed in Appendix A, the
resolved enstrophy is produced by resolved vortex stretching and dissipated by the subfilter
terms.

In the first and second approaches, we rely on the DNS data to determine the value of the
model coefficient. The first approach is based directly on the balance between enstrophy
production and modeled enstrophy dissipation by the model:

〈ω̃i ω̃ j S̃i j 〉 = ν
〈
∂ω̃i

∂xj

∂ω̃i

∂xj

〉
+ C2

r 1
2

〈√
2S̃mnS̃mn

∂ω̃i

∂xj

∂ω̃i

∂xj

〉

+C2
r 1

2

〈
∂

∂xj

(√
2S̃mnS̃mn

)
∂

∂xi
(ω̃i ω̃ j )

〉
, (68)

from whichCr can be immediately determined by evaluating the averages from the DNS.
The second approach is similar to the first; it is based on requiring that the SFS model
dissipate the same amount of resolved enstrophy as the real SFS torque, i.e. on enforcing
the balance

〈ω̃ · r〉 = 〈ω̃ · g〉. (69)

Substituting the definitions ofr andg (Eqs. (62)–(67)) into Eq. (69) yields〈
ω̃i

[
− ∂

∂xj
(ω̃i u j − ω̃i ũ j )+ ∂

∂xj
(ũiω j − ũi ω̃ j )

]〉

= C2
r

〈
ω̃i

[
12 ∂

∂xj

(√
2S̃mnS̃mn

∂ω̃i

∂ x̃ j

)
−12 ∂

∂xj

(√
2S̃mnS̃mn

)
∂ω̃ j

∂xi

]〉
. (70)

Equation (70) can be directly used to computeCr . Note that, unlike the first method, the
unfiltered values, or at least averages of products of unfiltered values, are required. Naturally,
these are taken from the unfiltered DNS data.

In the third approach,Cr is evaluated using the dynamic procedure. To this end, the
vectorsl andm are evaluated from their definitions, i.e. by plugging the filtered data into
Eqs. (24)–(29). Oncel andm are computed,Cr is determined using Eq. (31).

The predictions of the first method are provided in Table VIII. The results show that the
predicted values ofCr for different filter sizes are comparable but thatCr decreases as1
increases. The drop inCr is weak when1 is small, but it is noticeable when1 approaches
the integral scale. Table VIII also provides the average value of enstrophy production
and viscous dissipation. The computed values show that at small filter scales the resolved
enstrophy is primarily dissipated by molecular viscosity, while at large filter size most of
the dissipation is due to SFS torques.

Additional information regarding the enstrophy balance leading to the present predictions
is provided in Table IX, which shows the computed values of the remaining terms in Eq. (68).
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TABLE VIII

Model ConstantCr Obtained by Balancing Enstrophy

Production and Dissipation

1/η N Cr 〈ω̃ω̃ : S̃〉× `3/u′3 ν〈∇ω̃ : ∇ω̃T〉× `3/u′3

5 128 0.0858 197.64 148.54
10 128 0.0816 112.56 59.024
20 128 0.0772 39.344 12.456
40 128 0.0734 8.7664 1.5396
80 128 0.0591 1.1763 .15265

6.5 64 0.0802 93.198 65.686
13 64 0.0767 44.240 20.855
26 64 0.0702 11.687 3.4655
52 64 0.0601 1.6987 .35335

Note. Results are obtained for different filter sizes, using both the 643

and 1283 DNS data sets.

The results in Table IX support some of the approximations made in the analysis (see
Appendix A); in particular they show that

〈(∇|S̃|) · [∇ · (ω̃ω̃)]〉 ¿ 〈|S̃|∇ω̃ : ∇ω̃T〉 (71)

and

〈|S̃|∇ω̃ : ∇ω̃T〉 ≈ 〈|S̃|〉〈∇ω̃ : ∇ω̃T〉. (72)

The predictions of the dynamic model are given in Table X. In all cases considered,
the calculations are based on a test filter width1′ = 21, as is typically the case in many
applications [17]. Included in Table X are calculations made while neglectinglS and/or
mZ. The differences inCr caused by these approximations are minor; this is consistent
with arguments and experiences discussed above. The predicted value ofCr falls in the
range 0.09–0.10, but decreases slightly as1 increases. As noted earlier,Cr tends to drop

TABLE IX

Elements of Resolved Enstrophy Dissipation

1/η N 〈(∇|S̃|) · [∇ · (ω̃ω̃)]〉 〈|S̃|∇ω̃ : ∇ω̃T〉 〈|S̃|〉 〈∇ω̃ : ∇ω̃T〉

5 128 993.89 606217. 447272.
10 128 70.273 183983. 152996.
20 128 −11.983 25702.4 23734.9
40 128 −1.9094 1913.06 1863.79
80 128 −0.94686 105.093 105.173

6.5 64 98.505 101700. 85524.3
13 64 −43.951 23727.0 21853.8
26 64 −7.7209 2493.09 2413.51
52 64 0.15264 138.708 137.811

Note. Values are normalized by multiplying bỳ/u′3.



                  

716 MANSFIELD, KNIO, AND MENEVEAU

TABLE X

Model ConstantCr Obtained by the Dynamic Model

1/η N
〈l ·m〉
〈m ·m〉

〈l C ·m〉
〈m ·m〉

〈l ·mD〉
〈mD ·mD〉

〈l C ·mD〉
〈mD ·mD〉

5 128 0.1042 0.1021 0.1040 0.1023
10 128 0.0980 0.0959 0.0978 0.0961
20 128 0.0948 0.0924 0.0946 0.0926
40 128 0.0920 0.0893 0.0923 0.0905
80 128 0.0699 0.0725 0.0789 0.0813

6.5 64 0.1035 0.1011 0.1031 0.1013
13 64 0.0944 0.0917 0.0943 0.0922
26 64 0.0839 0.0804 0.0838 0.0811
52 64 0.0887 0.0864 0.0951 0.0901

Note. Results are obtained for different filter sizes, using both the 643 and
1283 DNS data sets.

appreciably as the filter size becomes very large. A similar drop at1→ ` was recently ob-
served for the Smagorinsky coefficientCs [48], based on energy dissipation arguments.
However, it was found thatCs also decreases in the limit of1→ η [48], while here
no such decrease is observed forCr . SinceCr depends on gradients of vorticity as op-
posed to velocity, it is plausible thatCr is less affected by viscosity thanCs at small
scales.

Finally, Table XI compares the computed values ofCr using all three methods. The
table shows that the predictions of the dynamic model are generally 18–25% higher than
those obtained using methods 1 and 2. On the other hand, the predictions of the dy-
namic model are about 20% smaller than the theoretical valueCr ≈ 0.12 obtained in Ap-
pendix A. Nonetheless, one may still note that the values of the model constant determined
using the dynamic procedure are fairly consistent with those obtained from enstrophy
balances.

TABLE XI

Model Constant Cr Obtained by: (a) Balancing Production

and Dissipation of Resolved Enstrophy; (b) Balancing the En-

strophy Dissipation of the Real and Modeled SFS Torques; and

(c) the Dynamic Procedure

1/η N Cr (a) Cr (b) Cr (c)

5 128 0.0858 0.0871 0.1042
10 128 0.0816 0.0827 0.0980
20 128 0.0772 0.0799 0.0948
40 128 0.0734 0.0822 0.0920
80 128 0.0591 0.0886 0.0699

6.5 64 0.0802 0.0843 0.1035
13 64 0.0767 0.0818 0.0944
26 64 0.0702 0.0799 0.0839
52 64 0.0601 0.0852 0.0887
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5. A PRIORI TESTS OF PARTICLE APPROXIMATION

The objective of this section is to establish the ability of the particle representation
(Section 3) to accurately determine the model coefficient and SFS torque. The analysis is
based on comparing predictions of the particle approximation to the corresponding spectral
values. The same DNS data is used to both determine the spectral values and to initialize the
particle field. Specifically, the data are filtered by convolution with the third-order Gaussian
core smoothing function (Eq. (43)). The convolution is performed on the DNS data in
Fourier space. Based on the filtered DNS data spectral collocation estimates ofũ, S̃, andω̃
are then obtained in physical space. Also,l C = (ũ · ∇ω̃ − ¯̃u · ∇ ¯̃ω) andmD are computed,
based on spectral differentiation and test-filtering at scale 21 with the cubic Gaussian.
These are the “spectral” values at the collocation points.

To compute their particle approximation, we imagine placing particles at collocation
points and associate the spectral values of ˜ω, ũ, andS̃ at those points with “particle values”
there. Next, the termsl C andmD are computed from these particle values, according to
the proposed scheme. Results are compared to the spectral values ofl C andmD. Some
intermediate variables are also compared.

In the evaluation of Lagrangian derivatives (Eqs. (55) and (56)) the DNS data at two time
levels,t andt+1t , are used. The normalized time step is1tu′/` = 8.34×10−3. In evaluat-
ing the particle vorticity at timet+1t , the particle positionsXi (t) (initially the collocation
points) are updated using a second-order predictor–corrector scheme to giveXi (t + 1t)
(which typically no longer coincide with collocation points). The vorticities atXi (t +1t)
are obtained by bilinear interpolation of the grid-based vorticity at timet +1t . Equations
(54)–(56) are then used to determine the Lagrangian derivatives [d̃ω̃/dt], [d̃ω̃/dt], and
[ ¯̃d ¯̃ω/dt], and consequentlyl C. The diffusive terms in the expressions ofmD require data

at a single time level. The diffusion terms∇ · (|S̃|∇ω̃),∇ · (|S̃|∇ω̃), and∇ · (| ¯̃S|∇ ¯̃ω) are
found directly from the particle data following Eqs. (51)–(53). The results are then plugged
into the definition ofmD (Eq. (28)).

By adopting this simplified approach, the analysis addresses the validity of the particle
approximation only. This represents a conservative approach, since the adopted initialization
scheme is rather crude, and the particle distribution may be further tuned to provide better
agreement with the DNS data. However, it is important to stress that this test does not address
the performance of the actual Lagrangian vortex method, where the dynamical equations
must be integrated over many time steps [14].

Tests are performed using four different particle distributions. In the first case, 643 parti-
cles are uniformly distributed in the domain; i.e., they are placed at the nodes of a uniform
Cartesian grid. As mentioned above, we associate the particle strength with the local filtered
vorticity; i.e., we setζ i = ω̃(Xi ). The volumes of the particles aredVi = h3, whereh is the
mesh size of the Cartesian grid. For the second case, the same number of particles is used, but
the particles are randomly distributed within the domain; a uniform random distribution in
3D is used for this purpose. The third and fourth distributions are similar to the first and sec-
ond, but they use a smaller number of particles,N = 323. Thus, the effect of particle density
can be examined. Unless otherwise noted, tests are performed with a filter width1 = 20η.

At each particle position, all the quantities needed to determinel C andmD are computed
using both the spectral and particle schemes. The spectral computations rely on the 1283

DNS mesh. Since the filter size is significantly larger than the grid spacing, the filtered
quantities are very smooth. Thus, the interpolation errors are found to be insignificant.
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FIG. 10. Lagrangian derivatives of vorticity. Left:x, y, andzcomponents of̃dω̃/dt, arranged from top. Right:
x, y, andz components ofd̃ω̃/dt, arranged from top. The Lagrangian calculations (dash) are obtained using a
uniform distribution of 643 particles, while the spectral calculations (solid) are performed on a 1283 grid. Values
are normalized by(u′/`)2.

5.1. Regularly Placed Particles

Comparison of spectral and particle predictions of various Lagrangian derivatives are
provided in Figs. 10 and 11. The figures show 1D profiles along a selected line across the
3D domain. The results show that there is generally good agreement between the spectral
and particle predictions of̃dω̃/dt. There is better agreement between the computed values
of d̃ω̃/dt and ¯̃d ¯̃ω/dt, and it is hard to distinguish between the spectral and particle results
for l C.

Spectral and particle results for various filtered diffusion terms are shown in Figs. 12 and
13. The results for diffusion of grid filtered vorticity,∇ · (|S̃|∇ω̃), are in rough agreement.
The particle method experiences its largest errors at the extreme values of the derivative.
Note, however, that there is a better match between the predictions of the test-filtered
diffusion terms. This leads to a good agreement between the results formD, although the
extreme values appear to be slightly underestimated.
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FIG. 11. Lagrangian derivatives of vorticity. Left:x, y, andz components of¯̃d ¯̃ω/dt, arranged from top.
Right: x, y, andz components ofl C, arranged from top. The Lagrangian calculations (dash) are obtained using a
uniform distribution of 643 particles, while the spectral calculations (solid) are performed on a 1283 grid. Values
are normalized by(u′/`)2.

In order to provide a global contrast of particle and spectral results we rely on scatter
plots of 3D data sets. Such plots are provided in Figs. 14 and 15, which compare particle and
spectral computations of Lagrangian vorticity derivatives and diffusion terms, respectively.
The figures indicate that essential features in the 1D profiles are also, to a great extent,
representative of the 3D data. In particular, the plots clearly illustrate that there is general
agreement between particle and spectral computations and that the agreement is quite sharp
for test-filtered quantities.

Another advantage of the scatter plots is that they enable us to extract quantitative global
measures of the agreement between the Lagrangian and spectral predictions. Here, we
simply rely on the slope of the least-squares linear fit of the data in the scatter plots, and on
their linear correlation. Table XII gives the slopes of least-squares fits for selected vectors.
For the same cases, results for the linear correlation are provided in Table XIII. Since the
flow is isotropic, only thex-component of the vectors is considered in this analysis.



                   

720 MANSFIELD, KNIO, AND MENEVEAU

FIG. 12. Diffusion of resolved vorticity. Left:x, y, andz components of∇ · (|S̃|∇ω̃), arranged from top.
Right:x, y, andzcomponents of∇ · (|S̃|∇ω̃), arranged from top. The Lagrangian calculations (dash) are obtained
using a uniform distribution of 643 particles, while the spectral calculations (solid) are performed on a 1283 grid.
Values are normalized byu′2/`4.

Note that perfect agreement of the particle and spectral calculations would result in all
points falling on a line through the origin with slope equal to one. This is nearly the case
for l C

x . It is interesting that the correlation ofl C
x is much better than that of either of the

terms used to compute it,l C = d̃ω̃/dt − ¯̃d ¯̃ω/dt. This suggests that errors in computing
the Lagrangian derivatives are cancelled while taking the differences of filtered terms. The
correlations ofd̃ω̃x/dt and ¯̃d ¯̃ωx/dt are better than the correlation ofd̃ω̃x/dt, which is still
a respectable 0.914. The particle results ford̃ω̃x/dt have a slope of 1.1, but the test-filtered
predictionsd̃ω̃x/dt and ¯̃d ¯̃ωx/dt have a slope of 0.98 and 1.04, respectively. Overall, a near
unity slope of 1.008 forl C

x is obtained.
Results of the Lagrangian calculations of diffusion terms are generally in good agreement

with the corresponding spectral computations. Linear correlation coefficients fall in the
range of 0.96–0.99 for all the diffusion terms. However, the slope of the linear fit for
∇ · (|S̃|∇ω̃) (0.632) is rather low. The high value of the linear correlation and the behavior
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FIG. 13. Diffusion of resolved vorticity. Left:x, y, andz components of∇ · (| ¯̃S|∇ ¯̃ω), arranged from top.
Right: x, y, andz components ofmD, arranged from top. The Lagrangian calculations (dash) are obtained using a
uniform distribution of 643 particles, while the spectral calculations (solid) are performed on a 1283 grid. Values
are normalized byu′2/`4.

of the scatter plots indicate that the low value of the slope is due to underestimated predictions
across the whole range of values and not just not just an attenuation of extreme events. With
test filtering, the discrepancy drops to 12–17%. This suggests that the discrepancy is scale
dependent and not due to a constant factor in the method.

5.2. Variation of Parameters

In Section 5.1, the numerical tests focused on a single Lagrangian discretization, with par-
ticle data initialized on a uniform grid. Here, we briefly examine the effects of a nonuniform
distribution of particles, of particle density and filter width.

In order to examine the effect of an irregular distribution of particles the numerical tests are
repeated using a random initial distribution, but with the same number of particlesN = 643.
Bilinear interpolation is used to obtain values at particle locations. One-dimensional pro-
files and scatter plots for the Lagrangian derivatives and for the diffusion terms have been
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TABLE XII

Slope of Least-Squares Linear Fit of the Particle-Spectral Data

Filter width 1/η= 20 1/η= 40

No. of particles 643 323 323

Arrangement Regular Random Regular Random Regular Random

Quantity Slope

d̃ω̃x/dt 1.103 1.006 1.103 1.007 1.042 1.001

d̃ω̃x/dt 0.983 1.000 0.983 1.015 0.996 1.005
¯̃d ¯̃ωx/dt 1.046 1.001 1.001 1.013 1.018 1.011

l C
x 1.008 0.993 1.006 0.969 1.005 0.999

∇ · (|S̃|∇ω̃x) 0.632 0.632 0.658 0.625 0.582 0.588

∇ · (|S̃|∇ω̃x) 0.880 0.870 0.935 0.863 0.883 0.885

∇ · (| ¯̃S|∇ ¯̃ωx) 0.867 0.856 0.919 0.846 0.862 0.876
mD

x 0.835 0.823 0.884 0.804 0.815 0.840

FIG. 14. Lagrangian derivatives of vorticity. The particle values, obtained using a regular distribution of 643

particles, are plotted against the corresponding spectral computations, performed on the 1283 DNS grid.
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TABLE XIII

Linear Correlation of Particle and Spectral Data

Filter width 1/η= 20 1/η= 40

No. of particles 643 323 323

Arrangement Regular Random Regular Random Regular Random

Quantity Correlation

d̃ω̃x/dt 0.914 0.972 0.914 0.972 0.984 0.995

d̃ω̃x/dt 0.972 0.992 0.972 0.947 0.994 0.984
¯̃d ¯̃ωx/dt 0.984 0.989 0.984 0.932 0.997 0.986

l C
x 0.999 0.988 0.999 0.922 1.000 0.986

∇ · (|S̃|∇ω̃x) 0.963 0.946 0.958 0.834 0.951 0.934

∇ · (|S̃|∇ω̃x) 0.998 0.993 0.997 0.957 0.997 0.992

∇ · (| ¯̃S|∇ ¯̃ωx) 0.994 0.955 0.993 0.736 0.993 0.960
mD

x 0.988 0.896 0.987 0.592 0.984 0.895

FIG. 15. Turbulent diffusion terms. The particle values, obtained using a regular distribution of 643 particles,
are plotted against the corresponding spectral computations, performed on the 1283 DNS grid.
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obtained [49], but they are omitted since they exhibit essentially the same trends observed
earlier. Thus, we focus exclusively on global measures. Our experience is that adopting a
random distribution of particle positions slightly improves the correlation of the Lagrangian
derivatives (Table XIII) and, more significantly, the slopes of the corresponding least-squares
fits (Table XII). However, the correlation ofl C

x drops slightly, from 0.999 to 0.988. Thus,
it appears that the systematic cancellation of errors that occurs while taking differences
of Lagrangian derivatives (Section 5.1) depends on the spatial arrangement of particles.
The random placement of particles has a slight negative impact on the diffusion terms.

The correlations for∇ · (|S̃|∇ω̃x) and∇ · (|S̃|∇ω̃x) appear unaffected by the change in
particle arrangement. However, the correlations of∇ · (| ¯̃S|∇ ¯̃ωx) and formD both decrease,
from 0.994 to 0.955 and from 0.988 to 0.896, respectively. Thus, the effect of the particle
arrangement on the prediction of the diffusion terms is more noticeable. This is not surprising
since the random arrangement may easily cause severe deterioration of an already crude
particle strength initialization scheme.

The effects of particle density are analyzed in a similar fashion, and the results are also
reported in Tables XII and XIII. Included are results obtained using 323 particles, both with
regular and random particle distribution schemes. Briefly, when a regular arrangement is
used the change in the number of particles has a very small impact on the predictions. On
the other hand, when a random distribution of particles is used the reduction in number of
particles leads to noticeable deterioration in the correlations with spectral results. Consistent
with the discussion above, the effects are more pronounced for the diffusion terms.

Tables XII and XIII also provide results of tests conducted at larger filter width,1/η = 40.
The tests are repeated using 323 particles in order to keep the same filter width to particle
spacing ratio. Briefly, the results are very similar to those obtained at smaller filter width
and higher particle density and, consequently, lead to the same conclusions.

5.3. Dynamic Model Coefficient

Finally, the particle scheme is used to compute the dynamic model coefficient,Cr . As
outlined in Section 3 (see also discussion in Section 4),Cr is obtained based on partial
estimates ofl andm; specifically, we use

Cr '
( 〈l C ·mD〉
〈mD ·mD〉

)1/2

. (73)

Results are given in Table XIV. ForN= 643 and1/η= 20, Table XIV shows thatCr = 0.105
when a regular distribution is used andCr = 0.095 when a random distribution is employed.
Both values are close to the spectral prediction, with differences of less than 10% and 0.5%,
respectively. Good agreement is also obtained when a regular distribution withN= 323 is
used. However, for a random distribution withN= 323, Cr = 0.062, roughly 35% lower
than the spectral prediction. Dynamic predictions for1/η= 40 andN= 323 match closely
values calculated using1/η= 20 andN= 643.

We conclude that for grid filter width1/η = 20, 643 particles provide a sufficient reso-
lution for adequate prediction of the model coefficient and the SFS torque. Good agreement
with spectral predictions holds, whether the particles are arranged regularly or randomly.
Results with 323 particles arranged regularly agree with results using the larger particle den-
sity, but the agreement is reduced at the lower particle density if the particles are arranged
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TABLE XIV

Dynamic Model Coefficient Using

the Particle Scheme

1/η No. of particles Arrangement Cr

20 643 Regular 0.1052
20 643 Random 0.0952

20 323 Regular 0.1021
20 323 Random 0.0621

40 323 Regular 0.1070
40 323 Random 0.0950

randomly. Using a larger filter width and only 323 particles, however, maintains the resolu-
tion needed for the particle calculations to agree with the spectral calculations, regardless
of particle placement.

6. SUMMARY AND CONCLUSIONS

A dynamic eddy diffusivity model is developed for large eddy simulation of the vorticity
transport equation. The performance of the model is examined in light ofa priori tests, based
on results of direct numerical simulations of homogeneous, isotropic turbulence. Analysis
of the real and modeled SFS torques leads to the following conclusions:

1. Subfilter scale vortex stretching and tilting is a significant contributor to the SFS
overall torque. The contributions of SFS vortex stretching and tilting and of SFS convection
of vorticity are poorly correlated and, consequently, may require different models.

2. The real subfilter scale torque is modeled using an eddy diffusivity term of the form
∇ × (νT∇ × ω̃). The results indicate that this model shows fair correlation with the SFS
torque due to vortex transport, but poor correlation with the SFS torque due to vortex stretch-
ing and tilting. Future extensions of the eddy diffusivity model (e.g., through similarity and
mixed models) to improve on this weakness are desirable.

3. The SFS model can be expressed as the sum of a gradient diffusion term and a
generalized transport term, due to variable eddy viscosity. Results show that the gradient
diffusion part of the model is roughly one order of magnitude larger than the remaining
part.

4. From a practical point of view, our main conclusion is that the coefficient of the
eddy-viscosity model can be determined dynamically using filtering at two different scales
in the context of a Lagrangian vortex model. The computed values of the dynamic model
coefficient are consistent with those computed using resolved enstrophy balances.

Numerical experiments were also conducted to explore the implementation of the dy-
namic SFS model in a discretization that mimics a three-dimensional vortex method. The
simplified model and dynamic procedure are then recast in a Lagrangian form which is based
on a particle representation of the vorticity field. The values obtained from the particle dis-
cretization are compared to spectral values. The comparison shows that when sufficient
resolution is provided the particle scheme yields reasonable predictions of both the SFS
torques and the dynamic model constant.
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Results of thesea priori tests and previous experiences with vortex element computations
are quite encouraging, despite the indicated weaknesses of the model. In [14] we take
advantage of these results by applying the proposed dynamic LES scheme to a three-
dimensional vortex element-based LES of high-Reynolds-number shear flow.

APPENDIX A: THEORETICAL DETERMINATION OF MODEL CONSTANT

Cr FOR ISOTROPIC TURBULENCE

The traditional approach of determining the Smagorinsky coefficientCs is based on a
balance between energy production and SGS dissipation [15]. Analogously, determination
of Cr may proceed, based on balancing enstrophy production and dissipation for homo-
geneous, isotropic turbulence. The scalar dot product of ˜ω with Eq. (11) results in the
following equation of motion of the resolved enstrophy field:

∂

∂t

(
1

2
ω̃2

)
+ ũ · ∇

(
1

2
ω̃2

)
= ω̃ω̃ : S̃+ ν∇2

(
1

2
ω̃2

)
− ν∇ω̃ : ∇ω̃T+ ω̃ · r+ ω̃ · ∇ ×F .

(A.1)

Under the assumption of statistical homogeneity and stationarity, several terms average to
zero, leaving a balance of resolved enstrophy generation by vortex stretching and large-scale
forcing and dissipation by molecular viscosity and the subfilter scale torque:

0= [〈ω̃ω̃ : S̃〉 + 〈ω̃ · ∇ ×F〉] − [〈ν∇ω̃ : ∇ω̃T〉 − 〈ω̃ · r〉]. (A.2)

Assuming that filtering is done in the inertial range and that forcing occurs at integral length
scales only, scaling arguments show that

〈ω̃ · ∇ ×F〉/〈ω̃ω̃ : S̃〉 ∼ 12/`2. (A.3)

When1¿ `, we have

〈ω̃ · ∇ ×F〉¿ 〈ω̃ω̃ : S̃〉, (A.4)

and the forcing term may be safely neglected in the resolved enstrophy balance.
After replacing the subfilter torquer with the modelg (Eq. (15)), the resolved enstrophy

equation becomes

0= 〈ω̃ω̃ : S̃〉 − 〈(ν + νT)∇ω̃ : ∇ω̃T〉 − 〈(∇νT) · [∇ · (ω̃ω̃)]〉. (A.5)

Substituting forνT from Eq. (16) we have

〈ω̃i ω̃ j S̃i j 〉 = ν
〈
∂ω̃i

∂xj

∂ω̃i

∂xj

〉
+ C2

r 1
2

〈√
2S̃mnS̃mn

∂ω̃i

∂xj

∂ω̃i

∂xj

〉
+C2

r 1
2

〈
∂

∂xj

(√
2S̃mnS̃mn

)
∂

∂xi
(ω̃i ω̃ j )

〉
, (A.6)

from whichCr may be determined.
At large enough filter scale (1À η, whereη is the Kolmogorov scale), viscous dissipation

is negligible compared to subgrid scale dissipation. Also, as discussed in Section 4,

〈(∇‖S̃‖) · [∇ · (ω̃ω̃)]〉 ¿ 〈‖S̃‖∇ω̃ : ∇ω̃T〉, (A.7)
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so that

〈ω̃i ω̃ j S̃i j 〉≈ (Cr1)
2

〈√
2S̃mnS̃mn

∂ω̃i

∂xj

∂ω̃i

∂xj

〉
. (A.8)

Next, assuming that the strain rate norm and the vorticity gradient norm are uncorrelated
and that 〈√

S̃mnS̃mn

〉
≈〈S̃mnS̃mn〉1/2, (A.9)

we obtain 〈√
2S̃mnS̃mn

∂ω̃i

∂xj

∂ω̃i

∂xj

〉
≈
√

2〈S̃mnS̃mn〉1/2
〈
∂ω̃i

∂xj

∂ω̃i

∂xj

〉
. (A.10)

Similar assumptions of lack of correlation and of commutability of averaging with taking
the square root were made by Lilly [15] and Scottiet al. [50]. Results in Section 4 show
that these assumptions are in fact reasonable.

Kinematic relations for isotropic, incompressible turbulence give

〈ω̃i ω̃ j S̃i j 〉 = −35

2

〈(
∂ũ1

∂x1

)3
〉
, (A.11)

〈S̃i j S̃i j 〉 = 15

2

〈(
∂ũ1

∂x1

)2
〉
. (A.12)

Substituting Eq. (A.12) into Eq. (A.10), and Eqs. (A.10) and (A.11) into (A.8) results in

−35

2

〈(
∂ũ1

∂x1

)3
〉
≈C2

r 1
2
√

15

〈(
∂ũ1

∂x1

)2
〉1/2〈

∂ω̃i

∂xj

∂ω̃i

∂xj

〉
. (A.13)

It follows that

C2
r ≈

35

153/2
|S3| 〈S̃i j S̃i j 〉

12
〈
∂ω̃m
∂xn

∂ω̃m
∂xn

〉 , (A.14)

where

S3 =
〈(

∂ũ1

∂x1

)3
〉/〈(

∂ũ1

∂x1

)2
〉3/2

(A.15)

is the skewness of the filtered velocity derivative. The energy spectra of homogeneous,
isotropic turbulence provides the ratio of the norms of the filtered strain rate and filtered
vorticity gradient,

〈S̃i j S̃i j 〉
12
〈
∂ω̃m
∂xn

∂ω̃m
∂xn

〉 = 2
∫∞

0 |Ĝ1(k)|2k2E(k) dk

122
∫∞

0 |Ĝ1(k)|2k4E(k) dk
, (A.16)
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whereE(k) is the turbulence 3D energy spectrum and|Ĝ1(k)|2 is the filter spectrum. Since
it is assumed that the filter cuts off somewhere within the inertial range, the Kolmogorov
spectrumE(k)=Ckε

2/3k−5/3 may be used. The filterG1(k) is taken to be the Fourier
transform of the third-order Gaussian core-smoothing function. Numerical integration gives

〈S̃i j S̃i j 〉/12

〈
∂ω̃m

∂xn

∂ω̃m

∂xn

〉
=· 0.06098. (A.17)

The skewnessS3 can be measured by filtering experimental or DNS velocity signals. While
a dependence on filter size is typically observed [45], a representative value isS3≈−0.4.
Using|S3| =0.4 leads toCr = 0.12, as mentioned in Section 2.
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